The Evolution of Automotive Brake Emission: Part 2 of 3

The following is the second of three articles by Carlos Agudelo posted on The Brake Academy about another aspect of dealing with brake emissions as the world – and industry – come to grasp with this challenge.

The Evolution of Brake Pad and Rotor Emissions

Ten things the industry did to reduce brake emissions — a view from 2032

Ten is a particular number in Western culture. We split our history and lives into decades. We reference how Chicago owned the 1920s and the Bauhaus prominence in the 1930s. I grew up with English rock from the 1970s and moved to the United States in the early 2000s. And probably, the 2020s will be marked by the Covid-19 pandemic. Ten is also how to handle data with significant differences using logarithms and orders of magnitude, including brake particle emissions. Jane McGonigal — world-renowned future forecaster and game designer who predicted in 2008 a pandemic of a fictional virus in the fall of 2019, using social simulation tools;, indicates ten years as a relevant and manageable timeframe to ‘imagine’ the future. According to Jane and others, imagining the future is not about soothsaying or being accurate in our predictions. It is about using the collective imagination to envision what our lives, business, and society could look like ten years from today. Future thinking also gives us the courage to develop creative solutions and take actions to shape our future and avert or minimize risks.

Imagining the future of brake emissions is a relevant platform to exercise this future-building mindset. We already know that brake emissions will continue as a significant source of non-exhaust particulate matter (PM) unless we do something about it. We know that to emit less, brakes need to wear less. Brake emissions represent a percent of fine particle air pollution. The actual percentage remains elusive due to the complexities and dependency of location, traffic, weather patterns and seasons, day-to-day variation, and fleet composition. The correct answer will probably be that “it depends…”. Of particular interest are particles with an average diameter of 2.5 μm or smaller (PM2.5). The figure below illustrates the total PM2.5 concentrations (including transportation) and the annual averages of the population-averaged values ​​for 2019; Home | State of Global Air. Visit the website to learn more about how COVID-19 affected air quality and for more in-depth analysis. The HEI website for insights and extensive research efforts on the health effects of transportation systems.

The list

Over the next decade, what we do (or don’t) to lessen or minimize air pollution from friction brakes will influence our future. If we attempt a ten-year future simulation, these could be ten things we see in retrospect the industry and society doing, most of them as collaborative efforts. The list is in no particular order of importance of probability of happening or succeeding. Some may occur at different times, at different scales, in other regions, and some may merge to leverage the benefits further. The actual list of potential measures is much longer than this. You can play yourself a simulation or collaborate with your colleagues and peers to develop at least three more.

The achievements enumerated in this blog are from my ten-year future simulation and do not reflect the policies or plans of individual companies, entities, or regulatory bodies. The list includes some possible futures without any qualification on their likelihood or impact on reducing braking systems’ environmental or health effects.

To view the entire article, click HERE.

Leave a Reply

Your email address will not be published.